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1 Introduction

Top-quark production in hadronic collisions has been one of the most studied signal in

the last twenty years. Up to recent times, tt̄ pair production has been the only observed

top-quark source at the Tevatron collider, due to its large, QCD-dominated, cross section.

Processes where only one top quark appears in the final state are known in literature as

single-top processes. Their cross sections are smaller than the tt̄ pair one, due to their

weak nature. This fact, together with the presence of large W + jet and tt̄ backgrounds,

makes the single-top observation very challenging, so that this signal has been observed

only recently by the CDF [1] and D0 [2] collaborations.

– 1 –
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In spite of its relative small cross section, single-top production is an important sig-

nal for several reasons (see also refs. [3, 4] and references therein). Within the Stan-

dard Model, the single-top signal allows a direct measurement of the Cabibbo-Kobayashi-

Maskawa (CKM) matrix element Vtb [5] and of the b parton density. Furthermore, the

V-A structure of weak interactions can be directly probed in these processes, since the top

quark decays before hadronizing, and its polarization can be directly observed in the angu-

lar correlations of its decay products [6, 7]. Finally, single-top processes are expected to be

sensitive to several kinds of new physics effects and, in some cases, are the best channels to

observe them [8–10]. For all the above reasons, single-top is an important Standard Model

processes to be studied at the LHC, where the statistics limitation due to the small cross

section is less severe and differential distributions can also be studied.

In order to include a reliable description of both short- and long-distance effects into the

simulation of hadronic processes, it is important to consistently match fixed order results

with parton showers. Radiative corrections for single-top production have been known

for years [4, 11–18], while the implementation of these results into a next-to-leading-order

Shower Monte Carlo (SMC), namely MC@NLO [19, 20], is more recent [21, 22].

In this work we present a next-to-leading order (NLO) calculation of s- and t-channel

single-top production, interfaced to Shower Monte Carlo programs, according to the POWHEG

method. This method was first suggested in ref. [23], and was described in great detail in

ref. [24]. Until now, the POWHEG method has been applied to ZZ pair hadroproduction [25],

heavy-flavour production [26], e+e− annihilation into hadrons [27] and into top pairs [28],

Drell-Yan vector boson production [29, 30], W ′ production [31], Higgs boson production

via gluon fusion [32, 33] and Higgs boson production associated with a vector boson (Higgs-

strahlung) [33]. Unlike the MC@NLO implementation, POWHEG produces events with positive

(constant) weight, and, furthermore, does not depend on the subsequent Shower Monte

Carlo program. It can be easily interfaced to any modern shower generator and, in fact, it

has been interfaced to HERWIG [34, 35] and PYTHIA [36] in refs. [25, 26, 29, 32].

Single top production is the first POWHEG implementation of a process that has both

initial- and final-state singularities, and so the present work can serve as an example of

how to deal with this problem in POWHEG.

This paper is organized as follows. In section 2 we collect the next-to-leading order

cross section formulae and describe the kinematics and the structure of the singularities. In

section 3 we discuss the POWHEG implementation and how we have included the generation

of top-decay products. In section 4 we show our results for several kinematic variables.

Most of this phenomenological section is devoted to study the comparison of our results

with those of MC@NLO. We find fair agreement for almost all the distributions and give

some explanations about the differences we found. Some comparisons are carried out also

with respect to PYTHIA 6.4, showing that some distributions are strongly affected by the

inclusion of NLO effects. Top-decay effects are also discussed. Finally, in section 5, we give

our conclusions.

– 2 –
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2 Description of the calculation

In this section we present some technical details of the calculation, including the kinematic

notation we are going to use throughout the paper, the relevant differential cross sections

up to next-to-leading order in the strong coupling αS and the subtraction formalism we

have used to regularize initial- and final-state singularities. In this paper, we always refer to

top-quark production, since anti-top production is obtained simply by charge conjugation.

Single-top production processes are usually divided into three classes, depending on

the virtuality of the W boson involved at the leading order:

1. Quark-antiquark annihilation processes, such as

u + d̄ → t + b̄ , (2.1)

are called s-channel processes since the W -boson virtuality is timelike.

2. Processes where the top quark is produced with an exchange of a spacelike W boson,

such as

b + u → t + d , (2.2)

are called t-channel processes.

3. Processes in which the top quark is produced in association with a real W boson,

such as

b + g → t + W . (2.3)

These Wt processes have a negligible cross section at the Tevatron, while at the LHC

their impact is phenomenologically relevant. The calculation of NLO corrections to

Wt processes is also interesting from the theoretical point of view, since the definition

of real corrections is not unambiguous [22].

In this paper we consider only s- and t-channel processes. In these cases, the POWHEG

implementation needs to deal with both initial- and final-state singularities, and is thus

more involved than in processes previously considered. The associated Wt production has

only initial-state singularities and is thus analogous to previous POWHEG implementations.

We leave it to a future work.

In the calculation, all quark masses have been set to zero (except, of course, the top-

quark mass) and the full Cabibbo-Kobayashi-Maskawa (CKM) matrix has been taken into

account. However, for sake of illustration, we set the CKM matrix equal to the identity

in this section.

We refer to ref. [24] for the notation and for a deeper description of the POWHEG method.

Here we just recall that with B, V, R and G we indicate the Born, virtual, real and

collinear contributions respectively, divided by the corresponding flux factor. The same

letters, capitalized, are used for quantities multiplied by the luminosity factor. The explicit

formulae for these quantities are collected in section 2.3.

– 3 –
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process notation contributing subprocesses

qq′ → tb̄ Bqq′ ud̄ → tb̄, d̄u → tb̄

qq′ → tb̄g Rqq′ ud̄ → tb̄g, d̄u → tb̄g

gq → tb̄q′ Rgq,(s) gu → tb̄d, gd̄ → tb̄ū

qg → tb̄q′ Rqg,(s) ug → tb̄d, d̄g → tb̄ū

Table 1. List and notation for the Born and real processes for s-channel production. u and d stand

for a generic up- or down-type light quark.

2.1 Contributing subprocesses

In the following, we organize and label all the Born and real subprocesses, keeping the

distinction between the s- and t-channel contributions. This distinction holds also when

real corrections are considered, since, due to color flow, interferences do not arise between

real corrections to s- and t-channel Born processes.

1) In the s-channel case, there are only Born processes of the type qq′ → tb̄ , where q and

q′ run over all possible different quark and antiquark flavours compatible with the final

state. We denote with Bqq′ the (summed and averaged) squared amplitude, divided

by the flux factor. The corresponding real correction contributions include processes

with an outgoing or an incoming gluon, i.e. processes of type qq′ → tb̄g, gq → tb̄q′ and

qg → tb̄q′. We denote these contributions with Rqq′ , Rgq,(s) and Rqg,(s). The complete

list of s-channel processes and the notation we use are summarized in table 1.

2) In the t-channel case, there are only Born processes of the type qb → tq′ (and

bq → tq′), where q and q′ run over all possible flavours and anti-flavours. Their con-

tributions are denoted Bqb (Bbq). We use this notation since we want to keep track of

the down-type quark connected to the top quark. The structure of real corrections

is more complex in this case. Contributions obtained from the previous processes by

simply adding an outgoing gluon, qb → tq′g, will be denoted as Rqb. The subpro-

cesses generated by an initial-state gluon splitting into a quark-antiquark pair are

designated by Rqg,(t) for qg → tq′b̄
(
Rgq,(t) for gq → tq′b̄

)
and Rgb for gb → tq̄q′

(
Rbg

for bg → tq̄q′
)
. In the former case q and q′ are connected via a Wqq′ vertex, while

the gluon splits into a bb̄ pair, so the top quark is color connected with the incoming

gluon. In the latter case the situation is opposite, since the gluon splits into a qq̄ pair,

while the incoming b is directly CKM-connected to the top quark. This gives rise

to a different singularities structure, which we take into account in dealing with the

qg → tq′b̄ (gq → tq′b̄) and gb → tq̄q′ (bg → tq̄q′) processes separately. The complete

list of t-channel processes and the notation we use are summarized in table 2.

In order to distinguish s- and t-channel real processes with the same flavour structure,

we have used the subscript (s) and (t) on the Rgq and Rqg contributions. As already

stated, these contributions do not interfere owing to different color structures, so we can

keep them distinct. We have drawn a sample of Feynman diagrams for s- and t-channel

gu → tdb̄ scattering in figure 1.

– 4 –
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process notation contributing subprocesses

bq → tq′ Bbq bu → td, bd̄ → tū

qb → tq′ Bqb ub → td, d̄b → tū

bq → tq′g Rbq bu → tdg, bd̄ → tūg

qb → tq′g Rqb ub → tdg, d̄b → tūg

gq → tq′b̄ Rgq,(t) gu → tdb̄, gd̄ → tūb̄

qg → tq′b̄ Rqg,(t) ug → tdb̄, d̄g → tūb̄

gb → tq̄q′ Rgb gb → tūd

bg → tq̄q′ Rbg bg → tūd

Table 2. List and notation for the Born and real processes for t-channel production.

g

u

d

t

b

g

u

d

t

b

(a) s-channel

g

u

t

d

b

g

u

t

d

b

(b) t-channel

Figure 1. Graphs corresponding to s- and t-channel contributions to the real scattering gu → tdb̄.

2.2 Kinematics and singularities structure

2.2.1 Born kinematics

Following the notation of ref. [24], we denote with k̄⊕ and k̄⊖ the incoming quark momenta,

aligned along the plus and minus direction of the z axis, by k̄1 the outgoing top-quark

momentum and by k̄2 the other outgoing light-parton momentum. The final-state top-

quark virtuality will be denoted by M2, so that k̄2
1 = M2. The top quark on-shell condition

is M2 = m2
t , where mt is the top-quark mass. If K⊕ and K⊖ are the momenta of the

incoming hadrons, then we have

k̄© = x̄©K© , (2.4)

where x̄© are the momentum fractions, and momentum conservation reads

k̄⊕ + k̄⊖ = k̄1 + k̄2 . (2.5)

We introduce the variables

s̄ = (k̄⊕ + k̄⊖)2, Ȳ =
1

2
log

(k̄⊕ + k̄⊖)0 + (k̄⊕ + k̄⊖)3

(k̄⊕ + k̄⊖)0 − (k̄⊕ + k̄⊖)3
, (2.6)

and θ̄1, the angle between the outgoing top quark and the k̄⊕ momentum, in the partonic

center-of-mass (CM) frame. We denote with φ̄1 the azimuthal angle of the outgoing top

quark in the same reference frame. Since the differential cross sections do not depend on

the overall azimuthal orientation of the outgoing partons, we set this angle to zero. At the

end of the generation of an event, we perform a uniform, random azimuthal rotation of

– 5 –
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the whole event, in order to cover the whole final-state phase space. The set of variables

Φ̄2 ≡
{
s̄, Ȳ , θ̄1, φ̄1

}
fully parametrizes the Born kinematics. From them, we can reconstruct

the momentum fractions

x̄⊕ =

√

s̄

S
eȲ , x̄⊖ =

√

s̄

S
e−Ȳ , (2.7)

where S = (K⊕ + K⊖)2 is the squared CM energy of the hadronic collider. The outgoing

momenta are first reconstructed in their longitudinal rest frame, where Ȳ = 0. In this

frame, their energies are

k̄0
1|Ȳ =0 =

√
(

s̄ − M2

2
√

s̄

)2

+ M2 and k̄0
2 |Ȳ =0 =

s̄ − M2

2
√

s̄
. (2.8)

The two spatial momenta are obviously opposite and both have modulus equal to k̄0
2|Ȳ =0.

We fix the top-quark momentum to form an angle θ̄1 with the ⊕ direction and to have zero

azimuth (i.e. it lies in the xz plane and has positive x component). Both k̄1 and k̄2 are

then boosted back in the laboratory frame, with boost rapidity Ȳ . The Born phase space,

in terms of these variables, can be written as

dΦ̄2 = dx̄⊕ dx̄⊖(2π)4δ4
(
k̄⊕ + k̄⊖ − k̄1 − k̄2

) d3k̄1

(2π)32k̄0
1

d3k̄2

(2π)32k̄0
2

=
1

S

β

16π
ds̄ dȲ d cos θ̄1

dφ̄1

2π
, (2.9)

where

β = 1 − M2

s̄
. (2.10)

We generate the top quark with virtuality M2 and decay it with a method analogous to

the one adopted in ref. [37], that will be described in section 3.3. We take into account the

top finite width by first introducing a trivial integration
∫

dM2 δ(M2 − m2
t ) in eq. (2.9)

and then by performing the replacement

δ
(
M2 − m2

t

)
→ 1

π

mt Γt
(
M2 − m2

t

)2
+ (m2

t Γ2
t )

. (2.11)

With this substitution, the final expression for the Born phase space reads

dΦ̄2 =
1

S

β

16π2

mt Γt
(
M2 − m2

t

)2
+ m2

t Γ2
t

dM2 ds̄ dȲ d cos θ̄1
dφ̄1

2π
. (2.12)

2.2.2 Real-emission kinematics

Real-emission processes have an additional final-state parton that can be emitted from

an incoming leg only (Rgq,(s), Rqg,(s), Rgq,(t), Rqg,(t), Rgb, Rbg) or from both an initial-

and final-state leg (Rqq′ , Rbq, Rqb). We need then to use two different parametrizations

of the real phase space, one to deal with initial-state singularities and one for final-state

ones. We treat the radiation kinematics according to the variant of the Frixione, Kunszt

and Signer (FKS) subtraction scheme [38, 39] illustrated in ref. [24]. Before giving all the

technical details, we summarize briefly how the procedure works:

- We split each real squared amplitude into contributions that have at most one

collinear (and/or one soft) singularity.

– 6 –
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- We build the collinear (and soft) subtraction terms needed to deal with that singu-

larity.

- We choose the emission phase-space parametrization suited for the singularity we

integrate on.

In the FKS method, the singular regions associated with the ⊕ and ⊖ legs are treated with

the same kinematics. Nevertheless, we have decided to split these two different contribu-

tions in order to gain a clear subtraction structure.

We now describe the procedure used to split real squared amplitudes and the cor-

responding phase-space parametrizations. Subtraction terms will then be given in sec-

tion 2.3.3. We proceed as follows:

1. We start by considering real processes that have both initial- and final-state emissions,

namely the Rqq′ , Rbq and Rqb contributions. In this case, the FKS parton is the

outgoing gluon and we choose it to be the last particle. We denote its momentum by

k3, so that momentum conservation reads

k⊕ + k⊖ = k1 + k2 + k3, (2.13)

where k⊕, k⊖, k1 and k2 label the same particles of the underlying Born process. The

FKS parton can become collinear to one of the incoming legs or to the other massless

final-state leg, so we need to introduce a set of functions to project out these different

singular regions. The general properties these functions have to satisfy were given in

section 2.4 of ref. [24]. In this paper we use

S3,⊕ = D−1 1

d3,⊕

, S3,⊖ = D−1 1

d3,⊖

, S3,2 = D−1 1

d3,2
, (2.14)

where

D =
1

d3,⊕

+
1

d3,⊖

+
1

d3,2
and di,j = ki · kj . (2.15)

For any given kinematic configuration, these functions satisfy

S3,⊕ + S3,⊖ + S3,2 = 1. (2.16)

The separation among different singular regions is performed multiplying each real

contribution with the corresponding S function. For example, for the s-channel Rqq′

case, we have

R3,⊕
qq′ = Rqq′ S3,⊕,

R3,⊖
qq′ = Rqq′ S3,⊖,

R3,2
qq′ = Rqq′ S3,2. (2.17)

These contributions are now singular only when the FKS parton becomes collinear

to k⊕, k⊖ and k2 respectively, or soft. Analogous relations hold for Rbq and Rqb.

– 7 –
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2. Next we consider the real process gb → tq̄q′. It is singular when q̄ or q′ become

collinear to the incoming gluon, so that the FKS parton can be respectively q̄ or q′

and we need again a set of functions to project out the different singular regions.

Recalling the labeling of the momenta

g (k⊕) b (k⊖) → t (k1) q̄ (k2) q′ (k3) ,

we introduce the projecting functions

S2,⊕ =

(
1

d2,⊕

+
1

d3,⊕

)−1 1

d2,⊕

,

S3,⊕ =

(
1

d2,⊕

+
1

d3,⊕

)−1 1

d3,⊕

, (2.18)

to isolate the region where k2 · k⊕ → 0 or k3 · k⊕ → 0. We have then the two contri-

butions

R3,⊕
gb = Rgb S3,⊕ ,

R2,⊕
gb = Rgb S2,⊕ , (2.19)

coming from Rgb. For bg → tq̄q′, analogous contributions can be obtained from

eqs. (2.18) and (2.19) with the substitutions Rgb → Rbg and ⊕ → ⊖.

3. To deal with the remaining real contributions we do not need to introduce any other

S function, since each of them is singular in one region only (the ⊕ one for Rgq,(s)

and Rgq,(t), the ⊖ one for Rqg,(s) and Rqg,(t)).

Having split all real contributions in such a way that each term has at most one singularity,

we can associate with each of them a particular phase-space parametrization, suitable

to handle that singularity structure. In the following we summarize the reconstruction

procedure needed to build the real-emission kinematics, given the underlying Born one,

and a set of three radiation variables. For all the details, we refer to section 5 of ref. [24].

Parametrization of the initial-state radiation (ISR) phase space.

The FKS method uses the same phase-space parametrization for describing both the ⊕

and ⊖ singular regions. The set of radiation variables

ΦISR
rad = {ξ, y, φ} , (2.20)

together with the Born ones, completely reconstruct the real-event kinematics: Φ3 ≡
{
s̄, Ȳ , θ̄1, ξ, y, φ

}
. Using eq. (2.7), we can compute the underlying Born momentum frac-

tions x̄© and, from them, we obtain

x⊕ =
x̄⊕√
1 − ξ

√

2 − ξ(1 − y)

2 − ξ(1 + y)
, x⊖ =

x̄⊖√
1 − ξ

√

2 − ξ(1 + y)

2 − ξ(1 − y)
, (2.21)

– 8 –
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with the kinematics constraints

0 ≤ ξ ≤ ξM(y) , (2.22)

where

ξM(y) = 1 − max

{

2(1 + y) x̄2
⊕

√
(1 + x̄2

⊕)2(1 − y)2 + 16 y x̄2
⊕ + (1 − y)(1 − x̄2

⊕)
,

2(1 − y) x̄2
⊖

√
(1 + x̄2

⊖)2(1 + y)2 − 16 y x̄2
⊖ + (1 + y)(1 − x̄2

⊖)

}

. (2.23)

In the laboratory frame, the incoming momenta are given by

k© = x©K© . (2.24)

In the partonic center-of-mass frame, we define the FKS parton to have momentum

k′
3 = k′ 0

3 (1, sin θ sinφ, sin θ cos φ, cos θ), (2.25)

where

k′ 0
3 =

√
s

2
ξ, cos θ = y , (2.26)

and

s = (k⊕ + k⊖)2 =
s̄

1 − ξ
. (2.27)

From eqs. (2.25) and (2.26), we see that the soft limit is approached when ξ → 0, while

the collinear limits are characterized by y → 1 (k3 parallel to the ⊕ direction) or y → −1

(k3 parallel to the ⊖ direction).

Boosting k′
3 back in the laboratory frame with longitudinal velocity (x⊕−x⊖)/(x⊕+x⊖)

we obtain k3. Having computed k3 and k©, we can construct ktot = k⊕+k⊖−k3, while from

the underlying Born momenta we have k̄tot = k̄1 + k̄2. We construct then the longitudinal

boost BL, with boost velocity ~βL = (0, 0, βL), where

βL = − x̄⊕ − x̄⊖

x̄⊕ + x̄⊖

, (2.28)

so that the boosted momentum k′′
tot = BLktot has zero longitudinal component. In addition

we define

~βT = −
~k′′

tot

k′′ 0
tot

(2.29)

and the corresponding (transverse) boost BT , so that BT k′′
tot has zero transverse momen-

tum. The final-state momenta k1 and k2 in the laboratory frame are obtained with the

following boost sequence

ki = B
−1
L B

−1
T BL k̄i , i = 1, 2 . (2.30)

Finally, the three-body phase space can be written, in a factorized form, in terms of the

Born and radiation phase space

dΦ3 = dx⊕ dx⊖(2π)4δ4(k⊕ + k⊖ − k1 − k2 − k3)
d3k1

(2π)32k0
1

d3k2

(2π)32k0
2

d3k3

(2π)32k0
3

= dΦ̄2 dΦISR
rad ,

(2.31)
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where

dΦISR
rad =

s

(4π)3
ξ

1 − ξ
dξ dy dφ ≡ J ISR

rad

(
Φ̄2,Φ

ISR
rad

)
dξ dy dφ , (2.32)

that defines the Jacobian J ISR
rad of the change of variables.

Parametrization of the final-state radiation (FSR) phase space.

For the FSR phase-space parametrization ΦFSR
rad , we use the same notation as for the initial-

state case ΦISR
rad (see eq. (2.20)). We define, in the partonic center-of-mass frame,

ξ =
2k0

3

q0
, y =

~k3 · ~k2

k3 k2

, φ = φ
(

~η × ~k, ~k3 × ~k
)

, (2.33)

where

q = k⊕ + k⊖ , k = k2 + k3 , (2.34)

and the notation p stands for |~p|. We denote with ~η an arbitrary direction that serves as

origin for the azimuthal angle of ~k3 around ~k, while “×” is the cross vector product. The

notation φ(~v1, ~v2) indicates the angle between ~v1 and ~v2, so that φ is the azimuth of the

vector ~k3 around the direction ~k.1

From eq. (2.33) we see that the soft limit is approached when ξ → 0, while the collinear

limit is characterized by y → 1 (k3 parallel to k2).

Given the set of variables Φ3 ≡
{
s̄, Ȳ , θ̄1, ξ, y, φ

}
we can reconstruct the full real-event

kinematics. The momentum fractions x© are the same as the underlying Born ones, since

the emission from a final-state leg does not affect them, so that

x⊕ = x̄⊕ , x⊖ = x̄⊖ and s = s̄ . (2.35)

Inverting the first identity in eq. (2.33), we immediately have

k0
3 = k3 = ξ

q0

2
, (2.36)

where ξ is limited by

0 ≤ ξ ≤ ξM ≡ q2 − M2
rec

q2
, (2.37)

with

M2
rec = (q − k̄2)

2 = k2
1 . (2.38)

The energy (and the modulus) of the other light outgoing parton, always in the partonic

center-of-mass frame, is given by

k0
2 = k2 =

q2 − M2
rec − 2q0k3

2 [q0 − k3 (1 − y)]
. (2.39)

Given k2 and k3 we construct the corresponding vectors ~k2 and ~k3 such that their vector

sum ~k is parallel to ~̄k2 and the azimuth of ~k3 relative to ~k (the given reference direction) is φ.

1The FKS variant that we use (see ref. [24]) has a slightly different definition of φ than the one introduced

in the original FKS papers.
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Having fully defined k2 and k3, we can reconstruct the vector k of eq. (2.34) and find krec =

q − k. Finally, k1 can be obtained boosting k̄1 along the krec direction with boost velocity

~β = −
(

q2 − (k0
rec + krec)

2

q2 + (k0
rec + krec)

2

) ~krec

krec

, (2.40)

or, alternatively, exploiting momentum conservation of eq. (2.13). To obtain the momenta

in the laboratory frame we need to boost back all the outgoing momenta computed in the

center-of-mass frame.

In this case too, the three-body phase space can be written in a factorized form in

terms of the Born and radiation phase space

dΦ3 = dx⊕ dx⊖(2π)4δ4(k⊕ + k⊖ − k1 − k2 − k3)
d3k1

(2π)32k0
1

d3k2

(2π)32k0
2

d3k3

(2π)32k0
3

= dΦ̄2 dΦFSR
rad ,

(2.41)

where

dΦFSR
rad =

q2 ξ

(4π)3
k2

2

k̄2

(

k2 −
k2

2q0

)−1

dξ dy dφ

=
s

(4π)3
4 ξ

[2−ξ (1−y)]2

(

1− s ξ

s − M2
rec

)

dξ dy dφ≡JFSR
rad

(
Φ̄2,Φ

FSR
rad

)
dξ dy dφ . (2.42)

2.3 Squared amplitudes

In order to apply the POWHEG method, we need the Born, real and soft-virtual contributions

to the differential cross section, i.e. the squared amplitudes, summed (averaged) over colors

and helicities of the outgoing (incoming) partons, and multiplied by the appropriate flux

factor. We have taken the Born, real and soft-virtual contributions from the MC@NLO code,

testing, where possible, our implementation against MadGraph subroutines [40]. All the

matrix elements have been evaluated in the zero-width approximation, i.e. Γt and ΓW are

set equal to zero in all the propagators. As already mentioned, to recover finite-width

effects in top-decay, the top mass M is generated according to a Breit-Wigner distribution,

centered in mt and with width Γt (see eq. (2.11)).

In the following, we give explicit expressions for the Born and collinear remnant contri-

butions. Real and soft-virtual matrix elements are more complicated, and we do not report

them explicitly. Nevertheless, we give the soft and collinear limits of the real amplitude,

since these expressions are needed in the FKS subtraction formalism.

2.3.1 Born and virtual contributions

We denote the s-channel squared matrix element for the lowest-order contribution, averaged

over color and helicities of the incoming particles, and multiplied by the flux factor 1/(2s̄),

as Bqq′ . For example, for the ud̄ → tb̄ subprocess, we have

Bud̄ =
1

2s̄

g4

4
ū(ū − M2)

∣
∣
∣
∣

1

s̄ − m2
W

∣
∣
∣
∣

2

|Vud|2|Vtb|2, (2.43)
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where ū = (k̄⊕ − k̄2)
2 is the usual Mandelstam variable, g is the weak coupling

(e = g sin θeff
W ) and Vij’s are the CKM matrix elements. Crossing eq. (2.43) we have, for

the d̄u initiated process,

Bd̄u =
1

2s̄

g4

4
t̄(t̄ − M2)

∣
∣
∣
∣

1

s̄ − m2
W

∣
∣
∣
∣

2

|Vud|2|Vtb|2, (2.44)

and for the t-channel contributions (Bbq and Bqb) of the bu → td and ub → td subprocesses

Bbu =
1

2s̄

g4

4
s̄(s̄ − M2)

∣
∣
∣
∣

1

t̄ − m2
W

∣
∣
∣
∣

2

|Vud|2|Vtb|2,

Bub =
1

2s̄

g4

4
s̄(s̄ − M2)

∣
∣
∣
∣

1

ū − m2
W

∣
∣
∣
∣

2

|Vud|2|Vtb|2, (2.45)

where t̄ = (k̄⊕ − k̄1)
2. The corresponding expressions for bd̄ → tū and d̄b → tū can be

obtained from the latter again by crossing. They are given by

Bbd̄ =
1

2s̄

g4

4
ū(ū − M2)

∣
∣
∣
∣

1

t̄ − m2
W

∣
∣
∣
∣

2

|Vud|2|Vtb|2,

Bd̄b =
1

2s̄

g4

4
t̄(t̄ − M2)

∣
∣
∣
∣

1

ū − m2
W

∣
∣
∣
∣

2

|Vud|2|Vtb|2. (2.46)

The finite soft-virtual contributions, obtained according to the FKS method, have been

taken from the MC@NLO code. We included them in our NLO calculation and tested

the correct behaviour of our program by comparing our NLO results with the MCFM

code [41], both for the full NLO cross section and for typical differential distributions.

Some comparisons have also been carried out with the program ZTOP [42].

2.3.2 Collinear remnants

The collinear remnants are given in eq. (2.102) of ref. [24]. Here we limit ourselves to list

all the contributions, giving only a couple of explicit examples to clarify the notation.

For the s-channel processes, the collinear remnants are

Gqq′

© (Φ2,©) , Ggq
⊕ (Φ2,⊕) and Gqg

⊖ (Φ2,⊖) , (2.47)

where the Φ2,⊕ notation, according to ref. [24], represents the set of variables

Φ2,⊕ = {x⊕, x⊖, z, k1, k2}, with z x⊕K⊕ + x⊖K⊖ = k1 + k2 . (2.48)

The underlying Born configuration Φ̄2, associated with the Φ2,⊕ kinematics, is defined by

k̄⊕ = z x⊕K⊕, k̄⊖ = x⊖K⊖, k̄1 = k1, k̄2 = k2 . (2.49)

Similar formulae hold for Φ2,⊖. Among the contributions listed in (2.47), only the real

process qq′ → tb̄g is singular in both the ⊕ and the ⊖ region. It thus needs the two
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collinear remnants

Gqq′

© (Φ2,©) =
αS

2π
CF

{

(1 + z2)

[(
1

1 − z

)

+

log
s̄

zµ2
F

+ 2

(
log(1 − z)

1 − z

)

+

]

+(1 − z)

}

Bqq′(s̄, Ȳ , θ̄1) . (2.50)

For the t-channel processes, the collinear remnants are

Gbq
© (Φ2,©) , Gqb

© (Φ2,©) , Ggq
⊕ (Φ2,⊕) , Gqg

⊖ (Φ2,⊖) , Ggb
⊕ (Φ2,⊕) and Gbg

⊖ (Φ2,⊖) .

(2.51)

In this case, Ggb
⊕ (Φ2,⊕) contains two terms, since in the scattering gb → tq̄q′ both the two

outgoing massless partons q̄ and q′ can become collinear to the incoming gluon. We have

Ggb
⊕ (Φ2,⊕) =

αS

2π
TF

{

(1 − z)
(
1 − 2z + 2z2

)
[(

1

1 − z

)

+

log
s̄

zµ2
F

+ 2

(
log(1 − z)

1 − z

)

+

]

+2z (1 − z)

}

[
Bq̄′b(s̄, Ȳ , θ̄1) + Bqb(s̄, Ȳ , θ̄1)

]
, (2.52)

where Bq̄′b and Bqb are the corresponding underlying Born processes. All the other contri-

butions can be obtained in a similar way.

2.3.3 Soft and collinear limits of the real contributions

In the FKS formalism, phase-space singular regions are approached when the radiation

variables ξ → 0 and/or y → ±1. The corresponding singularities are subtracted from

the real cross section using the plus distributions. One needs to express the singular

limits in terms of suitable radiation variables and of the corresponding underlying Born

contributions. In this section we compute these limits and give explicitly their expressions.

We start by considering the singular limits of the processes that have both ISR and

FSR singularities, namely Rqq′ , Rbq and Rqb. These processes are the most subtle, being

both soft and collinear divergent for initial- and final-state radiation. As an example, we

study the limits for the s-channel scattering qq′ → tb̄g. We can deal with ISR and FSR

separately, having defined the contributions R3,⊕
qq′ , R

3,⊖
qq′ and R3,2

qq′ .

For ISR singularities, we use the set ΦISR
rad to parametrize the kinematics. When y → ±1,

the momentum k3 is aligned along the © direction and k3 = ξ k©, in the CM frame. The

real squared amplitude factorizes and we have
[

R3,©
qq′

]

y→±1
=

4παS

k© · k3
P qq(z)Bqq′ = CF

1

ξ2(1 ∓ y)

16παS

s

(
1 + z2

)
Bqq′ , (2.53)

where z = (1 − ξ), P qq(z) is the usual Altarelli-Parisi (AP) splitting kernel and we have

included the real flux factor 1/(2s) and a 1/z factor into the B term, as its definition

requires. In the FKS approach, one needs the finite quantity ξ2(1∓ y)R3,©
qq′ to perform the

subtraction of the singularities. In the collinear limit, we have
[

ξ2(1 ∓ y)R3,©
qq′

]

y=±1
= CF

16παS

s

(
1 + z2

)
Bqq′ . (2.54)
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In the same limit, we also note that the contributions [ξ2(1 ∓ y)R3,©
qq′ ] and [ξ2(1 ∓ y)R3,2

qq′ ]

go to zero, because the factor ξ2(1∓1) makes them finite and the corresponding S functions

were chosen to vanish in this limit.

In the FSR case, the collinear limit is reached when y → 1. The outgoing momenta k3

and k2 become parallel and aligned along their sum, denoted by k. Momentum conserva-

tion reads

k = k2 + k3 , (2.55)

and, in the partonic CM frame, one has

k2 = z k (2.56)

where z = 1 − ξs/(s − M2
rec). A factorized expression holds in this case too

[

R3,2
qq′

]

y→1
=

4παS

k2 · k3
P qq(z)Bqq′ = CF

1

ξ2(1 − y)

16παS

zs

(
1 + z2

)
Bqq′ . (2.57)

The finite quantity needed in the application of the subtraction method is now

ξ2(1 − y)R3,2
qq′ , that is given by

[

ξ2(1 − y)R3,2
qq′

]

y=1
= CF

16παS

zs

(
1 + z2

)
Bqq′ . (2.58)

We note again that, in this collinear limit, the contributions [ξ2(1−y)R3,©
qq′ ] vanish, because

of the behaviour of the S functions.

The contribution Rqq′ is also singular when the outgoing gluon becomes soft, i.e. when

k3 → 0. In both the two phase-space parametrizations (ΦISR
rad and ΦFSR

rad ), this limit is ap-

proached when ξ→0. The Born process has more than 3 colored particles, so that, in gen-

eral, one may expect that soft singularities factorize in terms of the color ordered Born am-

plitudes [24]. However, in this case, the color algebra simplifies, because of the exchange of

an intermediate colorless particle, and we have complete factorization on the Born squared

amplitude. The Rqq′ contribution in the soft limit (eikonal approximation) is given by

[
Rqq′

]

ξ→0
= 8παSCF

{
k⊕ · k⊖

(k⊕ · k3)(k⊖ · k3)
+

k1 · k2

(k1 · k3)(k2 · k3)
− M2

2(k1 · k3)2

}

Bqq′ . (2.59)

The radiation variable y assumes different meaning in the case of ISR or FSR (see

section 2.2.2). In the ISR case, we have the finite contributions

[

ξ2(1∓y)R3,©
qq′

]

ξ=0
=4παSCF

{

16

s(1±y)
+

(s−M2)(1∓y)

(k1 ·k̂3)(k2 ·k̂3)
−M2(1∓y)

(k1 ·k̂3)2

}

S3,© Bqq′ , (2.60)

where k̂3 = k3/ξ identifies the direction of the soft gluon. In the FSR case we have instead

[

ξ2(1−y)R3,2
qq′

]

ξ=0
=4παSCF

{

s(1 − y)

(k⊕ ·k̂3)(k⊖ ·k̂3)
+

4(s−M2)

(k1 ·k̂3)sξ2

−M2(1−y)

(k1 ·k̂3)2

}

S3,2 Bqq′ , (2.61)

with ξ2 = 2k0
2/
√

s, defined in the partonic CM frame.

The t-channel processes Rbq and Rqb are dealt in an analogous way, either for the

collinear and the soft limits. All the other processes have only ISR collinear singularities:

the corresponding limits can be obtained from eq. (2.53), substituting the appropriate AP

splitting kernel and the Born term.

– 14 –



J
H
E
P
0
9
(
2
0
0
9
)
1
1
1

3 The POWHEG implementation

3.1 Generation of the Born variables

In the POWHEG method, we first generate the Born kinematics according to the B̄ function,

which is the integral of the full NLO cross section at a given value of the underlying Born

kinematics. It is defined as follows:

B̄ = B̄(s) + B̄(t) , (3.1)

where

B̄(s) =
∑

qq′

B̄qq′ , (3.2)

with

B̄qq′
(
Φ̄2

)
= Bqq′

(
Φ̄2

)
+ Vqq′

(
Φ̄2

)
+

∫

dΦFSR
rad R̂3,2

qq′

(
Φ̄2,Φ

FSR
rad

)

+

∫

dΦISR
rad

[
∑

©

R̂3,©
qq′

(
Φ̄2,Φ

ISR
rad

)
+R̂gq,(s)

(
Φ̄2,Φ

ISR
rad

)
+R̂qg,(s)

(
Φ̄2,Φ

ISR
rad

)

]

+

∫ 1

x̄⊕

dz

z

[

Gqq′

⊕ (Φ2,⊕)+Ggq
⊕ (Φ2,⊕)

]

+

∫ 1

x̄⊖

dz

z

[

Gqq′

⊖ (Φ2,⊖)+Gqg
⊖ (Φ2,⊖)

]

, (3.3)

and where

B̄(t) =
∑

q

[
B̄qb + B̄bq

]
, (3.4)

with

B̄qb

(
Φ̄2

)
= Bqb

(
Φ̄2

)
+ Vqb

(
Φ̄2

)
+

∫

dΦFSR
rad R̂3,2

qb

(
Φ̄2,Φ

FSR
rad

)

+

∫

dΦISR
rad

[
∑

©

R̂3,©
qb

(
Φ̄2,Φ

ISR
rad

)
+ R̂qg,(t)

(
Φ̄2,Φ

ISR
rad

)

+ R̂3,⊕
gb

(
Φ̄2,Φ

ISR
rad

)
+ R̂2,⊕

gb

(
Φ̄2,Φ

ISR
rad

)

]

+

∫ 1

x̄⊕

dz

z

[

Gqb
⊕ (Φ2,⊕)+Ggb

⊕ (Φ2,⊕)
]

+

∫ 1

x̄⊖

dz

z

[

Gqb
⊖ (Φ2,⊖) + Gqg

⊖ (Φ2,⊖)
]

. (3.5)

The B̄bq contribution can be obtained from eq. (3.5) by simply exchanging all flavour

indexes and substituting ⊕ ↔ ⊖.

According to the POWHEG notation, in eqs. (3.3) and (3.5) we have traded the B, V, R
and G quantities with the corresponding capital letters, obtained by multiplying them with

the appropriate luminosity L, defined in terms of the parton distribution functions (PDF)

f©

f (x©, µ2
F) as

Lff ′(x⊕, x⊖) = f⊕

f (x⊕, µ2
F) f⊖

f ′(x⊖, µ2
F) . (3.6)

All the integrals appearing in the above equations are now finite. In fact, following the

FKS subtraction scheme, the hatted functions

R̂©

ij =
1

ξ

{(
1

ξ

)

+

(
1

1 ∓ y

)

+

} [

(1 ∓ y) ξ2 R©

ij

]

(3.7)
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and

R̂FSR
ij =

1

ξ

{(
1

ξ

)

+

(
1

1 − y

)

+

}
[
(1 − y) ξ2 RFSR

ij

]
(3.8)

have only integrable divergences when integrated over ΦISR
rad and ΦFSR

rad respectively.2 Some

care should still be taken when dealing with the plus distributions. For more details we

refer to refs. [24] and [32].

Following ref. [24], we introduce the B̃ function, defined such that its integral over the

radiation variables, mapped onto a unit cube
(

{ξ, y, φ} →
{

X
(1)
rad,X

(2)
rad,X

(3)
rad

})

, gives

B̄ =

∫ 1

0
d3Xrad B̃ . (3.9)

The generation of the Born variables Φ̄2 is performed by using the integrator-unweighter

program MINT [43] that, after a single integration of the function B̃ over the Born and

radiation variables, can generate random values for the variables {Φ̄2,Xrad}, distributed

according to the weight B̃
(
Φ̄2,Xrad

)
. We then keep the Φ̄2 generated values only, and

neglect all the others, which corresponds to integrate over them. At this stage, we also need

to choose a Born flavour structure (fb in the language of ref. [24]) with a probability propor-

tional to its relative weight in the B̄ function (see eqs. (3.2) and (3.4)). The event is then

further processed, to generate the radiation variables, as illustrated in the following section.

3.2 Generation of the hardest-radiation variables

Radiation kinematics is generated using the POWHEG Sudakov form factor. For a given

underlying Born kinematics (Φ̄2) and flavour structure (fb), the Sudakov form factor can

be expressed as

∆fb(Φ̄2, pT) =
∏

αr∈{αr|fb}

∆fb
αr

(Φ̄2, pT) , (3.10)

where one needs to include in the product all the projected real contributions that have, as

singular limit, the generated underlying Born. In our case, for the s-channel, we can write

∆qq′(Φ̄2, pT) = ∆qq′

ISR(Φ̄2, pT) ∆qq′

FSR(Φ̄2, pT) , (3.11)

where

∆qq′

ISR(Φ̄2, pT) = exp

{

−
∫

dΦISR
rad

∑

©
R3,©

qq′ (Φ3) + Rgq′,(s) (Φ3) + Rqg,(s) (Φ3)

Bqq′(Φ̄2)

× θ(kT,ISR(Φ3) − pT)

}

(3.12)

2In our case, for both the s- and t-channels,

R̂
⊕

ij =
n

R̂
3,⊕

qq′
, R̂gq,(s), R̂

3,⊕

qb , R̂
3,⊕

gb , R̂
2,⊕

gb , R̂
3,⊕

bq , R̂gq,(t)

o

,

R̂
⊖

ij =
n

R̂
3,⊖

qq′
, R̂qg,(s), R̂

3,⊖

qb , R̂
3,⊖

bg , R̂
2,⊖

bg , R̂
3,⊖

bq , R̂qg,(t)

o

,

R̂
FSR

ij =
n

R̂
3,2
qq′

, R̂
3,2
qb , R̂

3,2
bq

o

.
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and

∆qq′

FSR(Φ̄2, pT) = exp

{

−
∫

dΦFSR
rad

R3,2
qq′ (Φ3)

Bqq′(Φ̄2)
θ(kT,FSR(Φ3) − pT)

}

. (3.13)

For clarity, here we indicate with Rgq′,(s) the real contribution of gq type that corresponds

to the underlying Born qq′. The functions kT,ISR(Φ3) and kT,FSR(Φ3) measure the hardness

of the radiation in the real event. In case of ISR singular processes, we chose as hardness

variable the exact transverse momentum of the emitted parton with respect to the beam

axis. In terms of ΦISR
rad, this is given by

k2
T,ISR =

s

4
ξ2

(
1 − y2

)
=

s̄

4(1 − ξ)
ξ2

(
1 − y2

)
. (3.14)

For the FSR singular processes, instead, we use as hardness variable the exact transverse

momentum of the FKS parton with respect to the other light outgoing parton, evaluated

in the center-of-mass frame. In terms of ΦFSR
rad , this is given by3

k2
T,FSR =

s̄

4
ξ2 (1 − y2) . (3.16)

The generation of the hardest radiation is performed individually for ∆qq̄
ISR and ∆qq̄

FSR, and

the highest generated kT is retained. This corresponds to generate according to eq. (3.11),

as shown in appendix B of ref. [24]. If kT is below a given cut, pmin
T , no radiation is

generated, and a Born event is returned.

The upper bounding functions for the application of the veto method have been chosen

in the following way:

∑

©
R3,©

qq′ (Φ3) + Rgq′,(s) (Φ3) + Rqg,(s) (Φ3)

Bqq′(Φ̄2)
J ISR

rad (Φ̄2,Φ
ISR
rad) ≤ N ISR

qq′

αS(k
2
T,ISR)

ξ (1 − y2)
(3.17)

for ISR, and
R3,2

qq′ (Φ3)

Bqq′(Φ̄2)
JFSR

rad (Φ̄2,Φ
FSR
rad ) ≤ NFSR

qq′
αS(k

2
T,FSR)

ξ (1 − y2)
(3.18)

for FSR.

The same procedures holds also for the t-channel case, with appropriate modifications

in formulae (3.11)–(3.18).

The method used to generate radiation events according to these upper bounding

functions is analogous to the one described in appendix D of ref. [25], and we do not repeat

it here.

As a final remark, we also point out that single-top s- and t-channel Born cross sec-

tions vanish at some points in the Born phase space, as one can argue by looking at

3Since for y → −1 no singularities arise in the FSR case, another possible choice for kT,FSR would be

k
2
T,FSR =

s̄

2
ξ
2(1 − y) , (3.15)

that has the same behaviour of eq. (3.16) in the collinear limit but has a simpler functional form. We have

checked that no sizable differences arise if one uses eq. (3.15) instead of eq. (3.16).

– 17 –



J
H
E
P
0
9
(
2
0
0
9
)
1
1
1

eqs. (2.43)–(2.46). For this reason, special care has to be taken during the radiation gener-

ation procedure. We handled this problem using the same method described in section 3.3

of ref. [29]. We thus refer to that paper for further details.

3.3 Top-quark decay

The calculation we have described so far leads to the generation of events with an undecayed

top quark. We include the decay kinematics effects in an approximate way, by requiring

that the decay products are distributed with a probability proportional to the tree-level

cross section for the full production and decay process. This procedure was first suggested

in ref. [37]. In the following we describe our implementation, focusing upon the decay

t → bW+ → bℓ̄ν.

We first generate a Born-like or real-like event according to the POWHEG method. In

both cases we denote the set of variables that parametrize the undecayed momenta as ΦPOW

and the corresponding flavour structure as f . As described at the end of section 2.2.1, at

this stage the top virtuality M2 is distributed according to a Breit-Wigner function. We

write the tree-level cross section for production and decay in the following form

dσf
dec =

1

2s
LMf

dec(ΦPOW,Φt→bℓ̄ν) dΦdec , (3.19)

where L is the luminosity factor and Mf
dec is the squared amplitude corresponding to the

full decayed process that originates from the undecayed process f .4 For consistency, the

squared amplitude Mf
dec must include only resonant graphs (i.e. graphs where the top

momentum equals the sum of the b, ℓ̄ and ν momenta). We write the full phase space,

including the decay, in the factorized form

dΦdec = dΦPOW dΦt→bℓ̄ν , (3.20)

where ΦPOW is the undecayed (POWHEG) phase space and Φt→bℓ̄ν is defined implicitly by this

equation. We notice that

Mf
undec × BR(t → bℓ̄ν) =

∫

Mf
dec dΦt→bℓ̄ν , (3.21)

where Mf
undec is the undecayed squared amplitude, i.e. the Born or real amplitude that we

used throughout the computation. Thus, the differential probability dP (Φt→bℓ̄ν|ΦPOW) for

the generation of Φt→bℓ̄ν from a given undecayed kinematics ΦPOW is

dP (Φt→bℓ̄ν|ΦPOW) =
1

BR(t → bℓ̄ν)

Mf
dec(ΦPOW,Φt→bℓ̄ν)

Mf
undec(ΦPOW)

dΦt→bℓ̄ν . (3.22)

To generate efficiently Φt→bℓ̄ν distributed according to (3.22) we use the hit-and-miss tech-

nique and so we need to find an upper bounding function for dP . This bound can be

4The full tree-level squared amplitudes M
f

dec have been obtained using MadGraph.
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guessed from the structure of the top decay. In our case, we use as upper bound for the

ratio Mf
dec(ΦPOW,Φt→bℓ̄ν)/Mf

undec(ΦPOW), the expression

Udec(M
2,Φt→bℓ̄ν) = Ndec

Mt→bW (M2,M2
ℓ̄ν

)

(M2 − m2
t )

2 + m2
t Γ2

t

MW→ℓ̄ν(M
2
ℓ̄ν

)

(M2
ℓ̄ν

− m2
W )2 + m2

W Γ2
W

, (3.23)

where M2
ℓ̄ν

= (kℓ̄ + kν)2 and Mt→bW and MW→ℓ̄ν are the decay squared amplitudes

corresponding to the subprocesses in their subscripts. In the previous formula, as well

as in Mf
dec, finite-width effects have been fully taken into account. One can predict the

appropriate value for the normalization factor Ndec as explained in ref. [37] or compute it

by sampling the decay phase space Φt→bℓ̄ν and comparing Udec with the exact expression,

in such a way that the inequality

Mf
dec(ΦPOW,Φt→bℓ̄ν) ≤ Mf

undec(ΦPOW) Udec(M
2,Φt→bℓ̄ν) (3.24)

holds. The veto algorithm is then applied:

1. First one generates a point in the phase space Φt→bℓ̄ν .

2. Then a random number r in the range
[
0, Udec(M

2,Φt→bℓ̄ν)
]

is generated.

3. If r < Mf
dec(ΦPOW,Φt→bℓ̄ν)/Mf

undec(ΦPOW), keep the decay kinematics and generate

the event. Otherwise go back to step 1.

4 Results

In this section we present our results and comparisons with the fixed order (next-to-leading)

calculation and with the MC@NLO 3.3 and PYTHIA 6.4.21 Shower Monte Carlo (SMC) pro-

grams.5 We have used the CTEQ6M [44] set for the parton distribution functions and the

associated value of Λ
(5)
MS

= 0.226 GeV. Furthermore, as discussed in refs. [24, 25], we use

a rescaled value ΛMC = 1.569Λ
(5)
MS

in the expression for αS appearing in the Sudakov form

factors, in order to achieve next-to-leading logarithmic accuracy.

Although the matrix-element calculation has been performed in the massless-quark

limit (except, of course, for the top quark), the lower cutoff in the generation of the

radiation has been fixed according to the mass of the emitting quark. The lower bound on

the transverse momentum for the emission off a massless emitter (u, d, s) has been set to the

value pmin
T =

√
5 ΛMC. We instead choose pmin

T equal to mc or mb when the gluon is emitted

by a charm or a bottom quark, respectively. We set mc = 1.55 GeV and mb = 4.95 GeV.

The renormalization and factorization scales have been taken equal to the radiated

transverse momentum during the generation of radiation (see eqs. (3.14) and (3.16)), as

the POWHEG method requires. We have also taken into account properly the heavy-flavour

thresholds in the running of αS and in the PDF’s, by changing the number of active

flavours when the renormalization or factorization scales cross a mass threshold. In the

5This newest update of PYTHIA yields more consistent results when multiple interactions are turned on

in user-initiated processes (see the release notes in http://projects.hepforge.org/pythia6/).
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B̄ calculation, instead, µR and µF have been chosen equal to the top-quark mass, whose

value has been fixed to mt = 175 GeV. In all the comparisons, we have kept the top-quark

virtuality M2 fixed to m2
t , so that matrix elements have been evaluated assuming Γt = 0.

We have also set ΓW = 0 in all the propagators. The other relevant parameters are

MW = 80.4 GeV , sin2 θeff
W = 0.23113 , α−1

em(mt) = 127.011989 . (4.1)

From the above values, the weak coupling has been computed as g =
√

4παem/ sin θeff
W . In

addition, for sake of comparison, we fixed the CKM matrix elements equal to

VCKM =

d s b

u

c

t






0.9740 0.2225 0.0000

0.2225 0.9740 0.0000

0.0000 0.0000 1.0000




 .

(4.2)

In order to minimize effects due to differences in the shower and hadronization algorithms,

we have interfaced POWHEG with the HERWIG angular-ordered shower when comparing with

MC@NLO and with the pT-ordered PYTHIA shower when comparisons with PYTHIA have been

carried out.

All the following results have been obtained assuming that the top decays semilepton-

ically (t → b ℓ̄ ν), as explained in section 3.3, but removing the branching ratio, so that

plots are normalized to the total cross section.

We present a few distributions, done mainly for comparison with MC@NLO and with the

NLO calculation. Some of them are “unphysical”, i.e., for example, when talking of the top-

quark momentum pt, we refer to the exact pt taken directly from the MC shower history,

right before the top decay. For sake of simplicity, we also force the lightest b-flavoured

hadrons to be stable after the hadronization stage of SMC programs.

Jets have been defined according to the kT algorithm [45], as implemented in the

FASTJET package [46], setting R = 1 and imposing a lower 10 GeV cut on jet transverse

momenta. We call “top jet” the jet that contains the hardest b-flavoured hadron,6 which

will, most of the time, come from the top-quark decay. The other reconstructed jets will

come from the shower of massless partons, and we call them “light jets”.7 In this way, the

momentum pt of the top quark and the momentum of the top jet are different, since the

last may or may not include all the particles from the top decay and shower.

4.1 Tevatron results

We start comparing various kinematical variables for single-top s-channel production at

the Tevatron pp̄ collider. In figure 2 we have collected the following distributions:

• In panels (a) and (b) we show the transverse momentum p t
T and the pseudorapidity

η t of the top quark and in panel (c) we show the hardest jet transverse momentum

p j1
T . The agreement with the fixed-order calculation and with the MC@NLO results is

6Here we mean precisely b-flavoured, i.e. not b̄-flavoured, that arises in the production process.
7In the fixed-order calculation, instead, the top quark is not decayed, and the top jet corresponds to the

jet that contains the top quark.
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very good. Only the top transverse-momentum distribution shows a tiny mismatch,

our result being slightly softer than the NLO and the MC@NLO ones. When interfacing

POWHEG with PYTHIA, we instead find full overlapping with the NLO result. It is thus

likely that this small feature may be attributed to shower effects.

• In panel (d), we plot prel,j1
T , the relative transverse momentum of all the particles

clustered inside the hardest jet. This is defined as follows:

– We perform a longitudinal boost to a frame where the hardest-jet rapidity is zero.

– In this frame, we compute the quantity

prel,j1
T =

∑

i∈j1

|~ki × ~p j1|
|~p j1| , (4.3)

where ki’s are the momenta of the particles that belong to the hardest jet that,

in this frame, has momentum p j1.

This quantity is thus the sum of the absolute values of the transverse momenta,

taken with respect to the jet axis, of the particles inside the hardest jet, in the

frame specified above. The plot shows a marked disagreement between fixed order

calculation and showered results. This disagreement is well understood, since the

observable we are considering is a measure of the spreading of the hardest jet. Thus,

its shape is strongly affected by the Sudakov form factor and it is well described by

SMC programs. The NLO calculation cannot give, instead, a reliable estimate, since

when prel,j1
T → 0 the differential cross section diverges.

• In plots (e) and (f ), the next-to-hardest jet transverse momentum p j2
T , and the

transverse momentum of the system made by the top quark and the hardest jet,

p
(tj1)
T , are shown. We see a remarkable good agreement between our program and

MC@NLO, while sensible differences with respect to the NLO results are present. At

the NLO parton level, p j2
T and p

(tj1)
T balance against each other, so that the two

distributions coincide down to the minimum pT cut present in the first plot.

In plot (e), we see an enhancement of the showered results at intermediate values

of pT, while in plot (f ) we see a low-pT suppression and an enhancement at

intermediate and high pT. The low-pT suppression is clearly a Sudakov effect. The

high-pT enhancement comes instead from events in which the hardest parton is well

balanced against the top quark, but where many hadrons, coming from the hardest

parton, end up in the top jet, and are thus removed, or they end up out of the jet

cluster. This creates an artificial imbalance, and thus an effective pT for the (tj1)

system. These effects are so pronounced because the cross section for a balanced

top-quark–hardest-jet system is much higher, since it does not require the production

of an additional hard parton. We have verified this hypothesis by analyzing POWHEG

outputs before the showering stage, either clustering or not the b quark coming from

the top decay. In the case where the b quark is included in the analysis (and the jet
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containing the b is removed from the jet sample), we see a marked rise of the pT tail.

A further rise is observed when the shower is turned on, and may be attributed to

energy lost out of the hardest jet cluster due to showering. We see no such effect for

the next-to-hardest jet spectrum in plot (e). There, the raise at medium pT may be

attributed to the shower pT smearing.

• Finally, in plots (g) and (h), the pseudorapidity η(tj1) of the top-quark–hardest-jet

system and the azimuthal difference ∆φt-j1 = |φt−φj1| are shown. The pseudorapid-

ity of the (tj1) system shows an expected discrepancy between the showered results

and the fixed order one: radiation near the beam axis is suppressed by the Sudakov

form factor but not in the NLO result, giving rise to the higher tails at large |η(tj1)|.
In plot (h), MC@NLO and POWHEG differ instead from the fixed order result for a kine-

matical reason: at the parton level, having at most three particles, there is no phase

space for the next-to-hardest jet to recoil against the (tj1) system when ∆φt-j1 < π/2.

A similar set of comparisons is presented in figure 3 for the t-channel production

mechanism, always at the Tevatron. The agreement between POWHEG and MC@NLO is as

good as before for inclusive quantities, or even better. In particular, the slight mismatch

in the top transverse-momentum distribution completely disappears, as one can see in

plot (a). For all the other plots, considerations similar to the s-channel case remain valid.

In figure 4 the same set of plots are shown, comparing POWHEG and PYTHIA. We have

good agreement for most distributions, after applying an appropriate K factor to the

PYTHIA results. Only minor differences are present in the high-pT tail of distributions in

panels (e) and (f ).

As a final comparison, in the left panel of figure 5, we show pB̄
T , the transverse-

momentum spectrum of the hardest b̄-flavoured hadron, after imposing the rapidity cut

|yB̄ | < 3. In the t-channel, this hadron will come most probably from an initial-state gluon

undergoing a bb̄ splitting. The b quark is then turned into a t while the b̄ quark is showered

and hadronized. We see that, while POWHEG and MC@NLO are in a fair agreement in the

medium- and high-pT range, sizable differences are present at low pT. These discrepancies

are most probably due to the disagreement that one can notice in the yB̄ distribution (right

panel of figure 5), and to a smaller extent to a different implementation of the inclusion of

b-mass effects by both programs (just before the showering stage).

We also plot in figure 6 the same quantities comparing POWHEG interfaced to PYTHIA

with respect to PYTHIA alone. A large mismatch in the high-pB̄
T spectrum is clearly visible

in the left panel. This observable is particularly sensitive to real matrix-element effects,

not present in PYTHIA. Concerning the low-pB̄
T behaviour, we see that here the difference is

much less pronounced than in figure 5. Furthermore, the aforementioned mismatch in the

yB̄ distribution is no longer present, as one can see in the right panel.

By comparing figures 5 and 6, one immediately notices the different behaviours of the

two Monte Carlo programs that we are interfacing to. We observe that the HERWIG shower

and hadronization create an enhancement at large values of |yB̄ |, which is not present in
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Figure 2. Comparisons between POWHEG, MC@NLO and NLO results for s-channel top production at

the Tevatron pp̄ collider.
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Figure 3. Comparisons between POWHEG, MC@NLO and NLO results for t-channel top production at

the Tevatron pp̄ collider.
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Figure 4. Comparisons between POWHEG and PYTHIA results for t-channel top production at the

Tevatron pp̄ collider.
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Figure 5. Comparisons between POWHEG and MC@NLO results for the hardest b̄-flavoured hadron

transverse momentum (left) and rapidity (right), for t-channel top production at the Tevatron pp̄

collider. Rapidity cuts are highlighted.

Figure 6. Comparisons between POWHEG and PYTHIA results for the hardest b̄-flavoured hadron

transverse momentum (left) and rapidity (right), for t-channel top production at the Tevatron pp̄

collider. Rapidity cuts are highlighted.

PYTHIA. This feature is known to the HERWIG authors,8 and is traced back to a mismatch of

the scale at which backward evolution is switched off, with the scale at which the b-quark

density is turned on in the pdf’s. The effect is more pronounced in MC@NLO, probably due

to the fact that POWHEG does not rely on HERWIG for the generation of the hardest splitting.

4.2 LHC results

In figures 7 and 8 similar results are reported for the LHC pp collider. Only plots for the t-

channel production are shown, the s-channel process having a negligible impact at the LHC.

Figure 7 contains comparisons between POWHEG, MC@NLO and NLO results. No signifi-

cant differences with respect to what we observed at the Tevatron arise in any plot, so that

we refer to the previous section for comments.

8See M. Seymour’s talk in http://bwhcphysics.lbl.gov/vplusjets.html.
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In the PYTHIA and POWHEG comparisons shown in figure 8, we immediately notice that

the POWHEG enhancement of high-pT tails in panels (e) and (f ) is here more marked, even if

still small. This may again be related to the lack of matrix-element corrections in PYTHIA,

resulting in larger discrepancies at the LHC with respect to the Tevatron case.

In panels (c) and (e), one can also notice different low-pT shapes with respect to the

same plots showing the POWHEG+HERWIG results of figure 7. We have verified that these

differences are due to the inclusion of multiple interactions (MI) in the default PYTHIA.9

If we limit ourselves to the results without MI (i.e. setting MSTP(81)=0 in PYTHIA), the

agreement is much better.

4.3 Top-quark decay

As explained in section 3.3, in our calculation we have implemented spin correlations in

top decay. Sizable effects are thus visible when comparing our results with SMC programs

that do not implement them. MC@NLO accounts for these effects with approximately the

same method that we use. Hence, we expect to have good agreement with MC@NLO and

visible discrepancies when comparing with PYTHIA.

Due to the V-A structure of the weak current, the best observables to highlight eventual

discrepancies are those involving the angle between the charged lepton ℓ̄ coming from top

decay and the direction of the down-type quark entering the W vertex involved in top

production, as shown in figure 9.

At the Born level, the down-type quark direction is possibly identified with the beam

axis for s-channel production, while, for t-channel production, it often corresponds to the

hardest jet axis (see ref. [47] for further details).

For sake of comparison, we have set the top virtuality M2 = m2
t and we have taken the

values Γt = 1.7 GeV and ΓW = 2.141 GeV in the evaluation of upper bounds of the decay

amplitudes in eq. (3.23) and in the decayed matrix element Mf
dec. Furthermore, we have

applied cuts similar to those used in ref. [37], both for the Tevatron and for the LHC, namely

pB
T ≥ 20GeV , |ηB | ≤ 2 , (4.4)

pℓ̄
T ≥ 10GeV , |ηℓ̄| ≤ 2.5 , (4.5)

pν
T ≥ 20GeV . (4.6)

We denote with the superscript B the top jet, i.e. the jet that contains the hardest

b-flavoured hadron (not the b̄). In single-top processes, this comes almost exclusively from

the bottom quark emerging from top decay. In t-channel production, in order to isolate a

central hardest light jet, we apply the further cuts

p j1
T ≥ 20GeV , |η j1| ≤ 2.5 . (4.7)

In figure 10 we show comparisons for the Tevatron pp̄ collider. On the left panel, we

plot the s-channel differential cross section as a function of cos χ, where χ is the angle

9These account for events where more than one parton pair in the same incoming hadrons give rise to

hard interactions.
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Figure 7. Comparisons between POWHEG, MC@NLO and NLO results for t-channel top production at

the LHC pp collider.
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Figure 8. Comparisons between POWHEG and PYTHIA results for t-channel top production at the

LHC pp collider.
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Figure 9. Lepton (1) and down-type quark (2) used to study spin correlations in top decay.

Figure 10. Comparisons between POWHEG, MC@NLO and PYTHIA angular correlations for s- (left)

and t-channel (right) top production at the Tevatron pp̄ collider.

between the hardest charged lepton ℓ̄, which we assume coming from top decay, and the

direction of the incoming parton with negative rapidity (the ⊖ direction of the z axis), as

seen in the top rest frame. Such angle is sensitive to the spin correlation between ℓ̄ and

the incoming d̄ quark, which, at the Tevatron, is pulled out mostly from the antiproton

traveling in the negative direction. On the right panel, we plot the t-channel differential

cross section as a function of cos θ, where θ is the angle between ℓ̄ and the hardest jet,

always evaluated in the top rest frame. In both plots, we observe a remarkable good

agreement with MC@NLO and the expected discrepancy with PYTHIA, that only performs a

spin-averaged top decay.

In figure 11 we plot the transverse momentum and pseudorapidity of the hardest

charged lepton, for s-channel production at Tevatron. The difference between PYTHIA

and POWHEG (or MC@NLO) can be shown to arise because of spin-correlation effects. To test

this, we run POWHEG with an undecayed top in the final state, leaving PYTHIA to perform

the decay: after rescaling the plots with the appropriate K factor, we obtain the same

behaviour as PYTHIA standalone.

In figure 12, the same distributions of figure 10 are shown for the LHC collider. The

same considerations done for the Tevatron apply for the LHC results.
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Figure 11. Comparisons between POWHEG, MC@NLO and PYTHIA transverse momentum and

pseudorapidity of the lepton coming from the top decay, for s-channel top production at the

Tevatron pp̄ collider.

Figure 12. Comparisons between POWHEG, MC@NLO and PYTHIA angular correlations for s- (left)

and t-channel (right) top production at the LHC pp collider.

4.4 Dips in the rapidity distributions

In previous works [25, 26, 29, 32], we have extensively discussed the presence of sizable

mismatches between POWHEG and MC@NLO results in the rapidity difference between the

hardest jet and the heavy system recoiling against it. More specifically, the MC@NLO results

exhibit, for this quantity, a dip at zero rapidity, not visible in POWHEG. This problem was

originally pointed out in ref. [48] in the framework of tt̄ production, and its origin was

traced back to HERWIG, that shows an even deeper dip for the same quantity. In ref. [33],

in the framework of Higgs production, this problem and its Shower Monte Carlo origin

was accurately studied.

In single-top production, the suitable quantity where to observe this mismatch is the ra-

pidity difference between the top-quark–hardest-jet system and the next-to-hardest jet. As

one can see in figure 13, in this case a dip in the central rapidity region is already present at
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Figure 13. Comparison between POWHEG, MC@NLO and NLO results for the rapidity difference

between the rapidity of the top-quark–hardest-jet system and the rapidity of the next-to-hardest jet,

for t-channel top production at the LHC pp collider. Plots are normalized to the total cross section.

the next-to-leading order. This feature may mask an eventual dip in MC@NLO. In fact, the two

showered results are fairly similar, with the dip being slightly more pronounced in MC@NLO.

In recent talks [49–51], one of us proposed a possible explanation of the presence of

these dips in the MC@NLO results. In the following we illustrate this explanation and show

that it is also compatible with the case at hand.

We can schematically represent the MC@NLO cross section for the hardest emission with

the following formula

dσ = B̄MC(Φ̄n) dΦ̄n
︸ ︷︷ ︸

S event

[

∆MC(Φ̄n, t0) + ∆MC(Φ̄n, t)
RMC(Φn+1)

B(Φ̄n)
dΦMC

rad

]

︸ ︷︷ ︸

MC shower

+
[

R(Φn+1) − RMC(Φn+1)
]

dΦ̄n dΦMC
rad

︸ ︷︷ ︸

H event

. (4.8)

The terminology “S” and “H events” is defined in the original MC@NLO papers [19, 20].

We have

B̄MC(Φ̄n) = B(Φ̄n) + V (Φ̄n) +

∫

dΦMC
rad RMC(Φn+1) , (4.9)

RMC(Φn+1) = B(Φ̄n)
αS(t)

2π

1

t
P (z) , (4.10)

∆MC(Φ̄n, t) = exp

{

−
∫

dΦMC
rad

αS(t)

2π

1

t
P (z) θ (kT(Φn+1) − t)

}

, (4.11)

– 32 –



J
H
E
P
0
9
(
2
0
0
9
)
1
1
1

where P (z) are the Altarelli-Parisi splitting kernels and dΦrad = dΦMC
rad ≡ dz dt dφ/(2π).

Notice that, on the right hand side of eq. (4.9), divergent quantities appear, and only their

sum is finite. In the MC@NLO framework, they are dealt with the subtraction method.

The “MC shower” factor in eq. (4.8) shows that the hardest emission is produced

by running the HERWIG shower Monte Carlo, starting with the event kinematics Φ̄n. In

fact, the Monte Carlo may not generate the hardest radiation as its first emission. It was

shown in ref. [23], however, that formula (4.8) does correctly represent the hardest emission

probability up to subleading effects, that we here assume to be irrelevant for our argument.

In the production of a high-pT parton, formula (4.8) yields

dσ ≈ B̄MC(Φ̄n)
RMC(Φn+1)

B(Φ̄n)
dΦ̄n dΦMC

rad +
[

R(Φn+1) − RMC(Φn+1)
]

dΦ̄n dΦMC
rad

≈ R(Φn+1) dΦ̄n dΦMC
rad +

(
B̄MC(Φ̄n)

B(Φ̄n)
− 1

)

︸ ︷︷ ︸

O(αS)

RMC(Φn+1) dΦ̄n dΦMC
rad , (4.12)

where we have used the fact that ∆MC(Φ̄n, t) ≈ 1 in this limit. The first term correctly

describes the hard radiation in the whole phase space. The second term, while formally

subleading in αS, is responsible for the dip. In fact, the dip present in HERWIG propagates

here with a weight proportional to (B̄MC/B − 1). Although subleading, this term can be

significant for processes with large K factors.

In the processes studied so far, this ratio was significantly higher than 1 (see, for

example, gg → H), so that the effect was particularly visible. In single-top production,

instead, due to the small NLO K factor, one has B̄MC/B ≈ 1. This, together with the fact

that the fixed NLO result already presents a central dip for y(t j1) − yj2, results in small

discrepancies between MC@NLO and POWHEG (see figure 13).

We notice that a similar mechanism (i.e. via a large B̄/B factor) for generating large

NNLO terms operates also in POWHEG, and has been discussed in ref. [32] in the framework

of Higgs production, as being responsible for a hard Higgs boson pT spectrum. In POWHEG,

however, this mechanism cannot generate any dip, since here HERWIG has no role in the

generation of the hardest radiation.

5 Conclusions

In this paper we have described a complete implementation of s- and t-channel single-top

production at next-to-leading order in QCD, in the POWHEG framework. This is the first

POWHEG implementation of a process where both initial- and final-state radiation is present.

The calculation for top production has been performed within the Frixione-Kunszt-Signer

subtraction approach [38, 39], modified according to ref. [24]. We accounted for spin-

correlation effects in top-quark decay with a method analogous to the one proposed in

ref. [37]. The results of our work have been extensively compared with the MC@NLO and

PYTHIA Shower Monte Carlo programs, together with the fixed next-to-leading order cal-

culation, both for the Tevatron and for the LHC.

The MC@NLO results are in good agreement with POWHEG, also for quantities sensitive to

angular correlations in top decay.
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The PYTHIA results, normalized to the total NLO cross section, show fair agreement

with ours for inclusive quantities that do not involve the top-decay products. As expected,

we have found sizable mismatches with PYTHIA when considering distributions involving

top-decay products, such as angular-correlation measurements and charged-lepton trans-

verse momentum and pseudorapidity. We have also found differences between our results

and the MC@NLO and PYTHIA ones in the hardest b̄-flavoured hadron transverse momentum

and rapidity. The high-pT mismatch with PYTHIA may be a consequence of the lack of

matrix-element corrections in the latter, while we attribute the low-pT disagreement with

MC@NLO to the sizable difference that we observe in the rapidity distribution.

The computer code for the POWHEG implementation presented in this paper is available,

together with the manual, at the site http://moby.mib.infn.it/∼nason/POWHEG.
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Studi di Firenze, Florence, Italy, 2009, http://theory.fi.infn.it/research/nason.pdf.

[50] P. Nason, MC at NLO tools, talk given at MC4LHC Meeting, CERN, Switzerland, 2009,

http://indico.cern.ch/getFile.py/access?contribId=2&resId=0&materialId=slides

&confId=49675.

[51] P. Nason, POWHEG, talk given at LoopFest symposium, Madison WI U.S.A. 2009,

http://agenda.hep.wisc.edu/materialDisplay.py?contribId=13&materialId=slides

&confId=189.

– 36 –

http://dx.doi.org/10.1088/1126-6708/2009/04/002
http://arxiv.org/abs/0812.0578
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JHEPA,0904,002
http://dx.doi.org/10.1088/1126-6708/2009/04/116
http://arxiv.org/abs/0903.4345
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.4345
http://dx.doi.org/10.1088/1126-6708/2001/01/010
http://arxiv.org/abs/hep-ph/0011363
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JHEPA,0101,010
http://arxiv.org/abs/hep-ph/0210213
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0210213
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://arxiv.org/abs/hep-ph/0603175
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0603175
http://dx.doi.org/10.1088/1126-6708/2007/04/081
http://arxiv.org/abs/hep-ph/0702198
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JHEPA,0704,081
http://dx.doi.org/10.1016/0550-3213(96)00110-1
http://arxiv.org/abs/hep-ph/9512328
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B467,399
http://dx.doi.org/10.1016/S0550-3213(97)00574-9
http://arxiv.org/abs/hep-ph/9706545
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9706545
http://dx.doi.org/10.1088/1126-6708/2007/09/028
http://arxiv.org/abs/0706.2334
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JHEPA,0709,028
http://mcfm.fnal.gov
http://home.fnal.gov/~zack/ZTOP/ZTOP.html
http://arxiv.org/abs/0709.2085
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=ARXIV:0709.2085
http://dx.doi.org/10.1088/1126-6708/2002/07/012
http://arxiv.org/abs/hep-ph/0201195
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0201195
http://dx.doi.org/10.1016/0550-3213(93)90166-M
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B406,187
http://dx.doi.org/10.1016/j.physletb.2006.08.037
http://arxiv.org/abs/hep-ph/0512210
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0512210
http://dx.doi.org/10.1103/PhysRevD.72.094034
http://arxiv.org/abs/hep-ph/0510224
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D72,094034
http://dx.doi.org/10.1088/1126-6708/2007/01/013
http://arxiv.org/abs/hep-ph/0611129
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0611129
http://theory.fi.infn.it/research/nason.pdf
http://indico.cern.ch/getFile.py/access?contribId=2&resId=0&materialId=slides&confId=49675
http://indico.cern.ch/getFile.py/access?contribId=2&resId=0&materialId=slides&confId=49675
http://agenda.hep.wisc.edu/materialDisplay.py?contribId=13&materialId=slides&confId=189
http://agenda.hep.wisc.edu/materialDisplay.py?contribId=13&materialId=slides&confId=189

	Introduction
	Description of the calculation
	Contributing subprocesses
	Kinematics and singularities structure
	Born kinematics
	Real-emission kinematics

	Squared amplitudes
	Born and virtual contributions
	Collinear remnants
	Soft and collinear limits of the real contributions


	The POWHEG implementation
	Generation of the Born variables
	Generation of the hardest-radiation variables
	Top-quark decay

	Results
	Tevatron results
	LHC results
	Top-quark decay
	Dips in the rapidity distributions

	Conclusions

